skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mihaylova, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The application of multiple target tracking algorithms has exponentially increased during the last two decades. Recently, model-free approaches, such as Gaussian process regression and convolutional neural networks, have been developed for target tracking. This paper presents a simulation-based study on the practical aspects of a very promising and recently proposed Gaussian process method, namely the Gaussian process motion tracker [1]. The paper also provides design guidelines on the various aspects of the above-mentioned tracking method. 
    more » « less
  2. This paper proposes a computer vision framework aimed to segment hot steel sections and contribute to rolling precision. The steel section dimensions are calculated for the purposes of automating a high temperature rolling process. A structured forest algorithm along with the developed steel bar edge detection and regression algorithms extract the edges of the high temperature bars in optical videos captured by a GoPror camera. To quantify the impact of noises that affect the segmentation process and the final diameter measurements, a weighted variance is calculated, providing a level of trust in the measurements. The results show an accuracy which is in line with the rolling standards, i.e. with a root mean square error less than 2:5 mm. 
    more » « less
  3. Bayesian neural networks are powerful inference methods by accounting for randomness in the data and the network model. Uncertainty quantification at the output of neural networks is critical, especially for applications such as autonomous driving and hazardous weather forecasting. However, approaches for theoretical analysis of Bayesian neural networks remain limited. This paper makes a step forward towards mathematical quantification of uncertainty in neural network models and proposes a cubature-rule-based computationally efficient uncertainty quantification approach that captures layerwise uncertainties of Bayesian neural networks. The proposed approach approximates the first two moments of the posterior distribution of the parameters by propagating cubature points across the network nonlinearities. Simulation results show that the proposed approach can achieve more diverse layer-wise uncertainty quantification results of neural networks with a fast convergence rate. 
    more » « less